Category Archives: Theory

Advances in the theory of Extended Heim Theory

The plot shows the Planck mass in D dimensions The six straight lines in white (d = 1, . . . , 6) are the graphical representation for the extra dimensions beyond the 4 established dimensions. D = 6 corresponds to the case of superstring (supersymmetry) that is formulated in 10 dimensions. The most striking results is that none of the white lines d = 1, ..., 6 intersect the green areas representing solutions for the hierarchy problem where the weak force and gravity are unified. Therefore, higher dimensions are not a solution. © 2017 Hauser and Dröscher

Recap of Gravity Beyond Einstein? Part I

In Gravity Beyond Einstein?  Part I: Physics and the Trouble with Experiments, Hauser and Dröscher review the latest experimental results in quantum physics and astrophysics, pointing out how unfulfilled predictions and contradicting experimental results have repercussions on the advanced physical theories that go beyond both the standard model of particle physics and cosmology.

I have previously made reference to Part I (published April of 2017) and am providing this recap since Part II is now being readied for publication.  As promised by the authors, Part II goes deep into the fundamentals behind their framework,  enumerating its theorems and impact on competing theories extending the standard model.  For both papers I had the honor of engaging in numerous e-mail discussions and literature hints with Jochem Hauser, as well as making edits to improve the style, clarity, and contents of the papers. 

In Part I the authors argued that fundamentally novel ideas are needed to be in accordance with all of the experimental findings representing efforts to discover new particles. In Part II the physical model EHT (Extended Heim Theory) is presented employing three completely novel and alternative concepts, namely, Heim space H8, an internal eight-dimensional gauge space and a classification scheme for all existing particles and fields.  Heim space is proposed in conjunction with an extra system of numbers (replacing the concept of extra dimensions) from real  to complex, quaternionic, octonionic, and sedenionic in order to set up a much larger class of physical symmetries. These concepts are then combined with the extension of four-dimensional (Minkowski) spacetime by a so-called dual space (imaginary time coordinate) to explain the location and nature of both dark matter and dark energy.

This recap serves as a prelude to Part II, which details replacing the extension of spatial dimensions by an extension of the field of numbers, postulating a relationship between numbers (those beyond real and imaginary numbers) and physics. 

In Part I, the authors divide the experiments to be reviewed into three classes.  The first are those that question the fundamental concept of these theories, namely, missing particles and the existence of extra spatial dimensions.  The second are those whose results appear to contradict each other.  The third are those rare experiments that hint at the existence of additional gravitational fields.

The first class of experiments include those with null results in the detection of either predicted particles or higher dimensions.  These include:

  1. LHC found no new matter particles up to mass 1.6 TeV/c2
    This is significant since supersymmetry (SUSY), a major part of the “super theories,” is used to unify the two different concepts of matter and force.  Yet nothing has been observed in this range.  No supersymmetry particle in the range of 750 GeV has been detected.  This lack of stable superpartners impacts the proposed stability of particles in the standard model.  The Supersymmetric Model posits that heavy subatomic particles influence the electron to alter its perfectly spherical shape.  In 2014 the electric dipole moment of the electron determining the shape of an electron’s charge was confirmed to be perfectly spherical (and improved methods this year increased the accuracy of those findings an order of magnitude). Since the electron’s charge is perfectly spherical it disproves the prediction of supersymmetry.
  2. Dark matter wanted
    The concept of dark matter was invented by the Caltech astronomer Zwicky in 1933 to explain the missing matter in the Coma cluster. Dark matter is the glue that is holding galaxies together, yet no dark matter particle has been found.  The proposed neutralino with a mass of about 1 TeV/c2 was not found by the LHC, nor have other leading candidates for dark matter particles been found.No evidence for dark matter has been found within 4 kpc above or below the galactic plane, confirming the absence of dark matter in the solar neighborhood.  Dark matter appears to be missing within galaxies, suggesting that if it is a particle it has unusual characteristics.Finally, the total absence of dark matter particles is not in accordance with the hot Big Bang concept. The hot Big Bang requires an unphysical event, namely the existence of a very high-energy density concentrated in an exceedingly small volume. The assumption of an initial false vacuum will not solve this problem. The fundamental question, how such a configuration (enormous amount of energy trapped in a small volume) should have come to exist at all, still remains.
  3. Higher dimensions challenged
    Extra dimensions are supposed to provide the means of escaping the physical constraints imposed by the three spatial dimensions of our perceptible four-dimensional spacetime. If the leading theories of particle physics including string theory, supersymmetry and supergravity are to be correct our Universe must be higher-dimensional.  That is, more than three real spatial dimensions must exist, as postulated by T. Kaluza in a letter to Einstein in 1919.  In 1921, Kaluza’s extension of Einstein’s GR was finally published utilizing a five-dimensional theory. Later, in 1926, Klein postulated a curled up microscopic fifth dimension in order to be in agreement with quantum mechanics.The hierarchy problem is the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity. If curled up, the curvature of spacetime in the fifth dimension would account for electromagnetism, unifying the weak force and gravity.  However, experimental constraints known since then put a stringent limit on the size of the microscopic fifth dimension and is inconsistent with quantum electro-dynamics.  Therefore, a five-dimensional world is now experimentally ruled out down to the microscale.As the authors note, “According to EHT, physics cannot be constructed from pure geometry (e.g. spacetime), because this goes against the governing fundamental physical principles… This means nothing less that the principle of duality is at the foundation of the entire Cosmos (order), governing the physical world, and therefore the two most basic, but complementary (dual) physical entities, namely, spacetime and dark energy both have to be generated at the same instant of time. The most general aspect of duality is represented by symmetry formation and symmetry breaking.”  Duality is a key construct of EHT and may doom attempts for the unification of all forces.

The second set of questions involves contradictions and gravitational phenomena. Two different types of experiments are presented that are independent on the existence of higher dimensions, but whose results are totally unforeseen and cannot be explained by either the SM of particle physics or any of the so-called advanced physical theories. 

The outcomes of the first experiment might be explained by utilizing quaternions developed over 150 years ago by Hamilton to extend complex numbers. The second experiment might indicate new forms of symmetry breaking at low temperatures in conjunction with novel types of gravitational bosons.

  1. Protons of different sizes
    Depending upon the method employed (whether muonic hydrogen where the electron is replaced by the much heavier muon particle, or by scattering measurements) different values are found for the radius of the proton.  EHT proposes that the physics going into the precision measurements of the proton is not complete.  By extending the system of numbers from real to quaternionic or octonionic, the solutions of the equation of the Planck mass will allow for material particles that may have positive real, negative real, or quaternionic masses. 
  2. Neutrons of different lifetimes
    The two different measurement techniques, the bottle (counting the number of the remaining neutrons) and the beam (counting the number of the resulting protons) methods, have measured a difference in the neutron lifetime of eight seconds, which is significantly larger than the measurement uncertainty. It seems that some of the protons have disappeared, not obeying the normal decay scheme of the neutron. The influence of a new particle has been ruled out since none in the mass range have been found by the LHC, but the difference might be influenced by hypercomplex matter (matter flavor) derived from octonionic algebra.

Part I also reviews the completeness of General Relativity and novel physical phenomena in the form of extreme gravitomagnetic fields.

  1. Completeness of Einstein’s Theory of General Relativity
    So far, GR has passed all experimental tests and observations. This, however, does not mean that novel physical phenomena cannot exist beyond the scope of GR.  Any valid theory of relativity must give the same predictions as Einstein’s GR.  Consequently, any modification of the gravitational law (e.g. the MOND hypothesis, employed to match observed rotational velocities of star systems about the galactic center) has to be rejected. Nevertheless, it is correct to state that the numerical predictions of the debated MOND hypothesis have been confirmed by the recent measurements of McGaugh.  If not MOND, what is the gravitational phenomenon responsible for the MOND acceleration as measured by McGaugh?
  2. Challenge for Einstein’s Theory of General Relativity: CDT
    A very comprehensive discussion on the topology of the Universe can be found in the recent comprehensive book by Ringström.  The CDT (causal dynamical triangulation) model of quantum gravity is non-perturbative (i.e., can be calculated by known procedure rather than by successive approximation). These computer simulations have revealed that spacetime in the absence of matter possesses a de Sitter topology and thus is that of a simply connected manifold with only one direct path for a light ray to travel from a source to an observer.  That is, there are no holes representing short cuts through spacetime.  Thus faster than light motion in GR via wormholes is ruled out by CDT and topologies do not seem to allow traversable wormholes.  
  3. Unruly Gravitational Constant GN
    Another mystery is discussed, namely the contradictory measurements of the gravitational constant. Measured results of the gravitational constant have failed to converge and different measurement procedures are delivering substantially different numerical values. Recently, several new experiments have been reported to measure Newton’s gravitational constant GN by applying different measuring techniques. These experiments have resulted in widely different numerical values for GN, which means that a deviation occurs as early as the third decimal place.  EHT proposes that GN is the sum of both a gravitational constant for hadrons plus a gravitational constant for leptons (a further gravitational constant needs to be introduced for the interaction of luminous matter with the vacuum field).

One of the most significant  proposals of EHT is the interaction between gravity and electrodynamics through bosons carrying gravity-like forces (most recently termed “e-gravity”).  During the past two decades, several experimenters have reported on the generation of extreme gravitomagnetic or gravity-like (acceleration) fields in the laboratory up to 18–20 orders of magnitude larger than predicted by the Lense-Thirring effect of GR. There are three different possible experimental sources for extreme gravitomagnetic experiments.

From 2006-2011 Tajmar et al. published a series of experiments claiming to have observed extreme gravitomagnetic and gravity-like acceleration fields produced by rotating cryogenic Nb rings. The strength of these fields was up to 18 orders of magnitude larger than predicted by GR and would be equivalent to the gravitational field produced by a white dwarf star. In 2007, a similar experiment was published by Graham et al. utilizing a rotating cryogenic lead disk.  Subsequent papers by Tajmar altered the experimental configuration of the apparatus, but with each modification a smaller effect was achieved.  Graham’s study was not conclusive because the sensitivity of the laser ring detector was too low to provide a satisfactory statistical result.

The third study, Stanford’s Gravity Probe B (GP-B) experiment, produced anomalous results defying predictions and delaying the evaluation of the final data for several years.  GP-B was launched into a 640-km low earth orbit (LEO) in 2004. It was not devised for the detection of extreme gravitomagnetic or gravity-like fields but might have inadvertently generated these fields in the cryogenic ambience of space as its Nb spheres were spun at high rates. Such fields require the existence of additional gravitational bosons not disallowed by GR, and despite not being predicted in the string theories, they were predicted in 2004 by the physical model of EHT.

The section Advanced Theories and Retarding Experiments reviews how recent experimental data and astronomical observations most likely contradict the underlying concept of extra spatial dimensions, which are at the root of all the advanced physical theories beyond the standard model.  Yet particles predicted by the super theories, as the authors state, “…have not been found, nor does it seem that the underlying concept of extra, curled up spatial dimensions holds up to physical reality. Hence, the physical concepts of, e.g., superstring theory (10 dimensions) … appear to be mathematical entities only.”  They continue, “The existing extensions of the SMs for particle physics and cosmology in the form of string theory, supersymmetry, higher dimensions, Anti-de Sitter space, moduli spaces, loop quantum gravity, and much discussed wormholes are suggested to not reflect physical reality but, rather, are only mathematical constructs not realized by Nature.”  Alternative physical principles that could replace advanced physical theories in higher dimensions would suggest more than four fundamental forces in Nature.  The mere belief of the existence of four fundamental forces is not sufficient. That being said, the question therefore arises whether there are any additional fundamental physical interactions?  If so, might they include gravity-like forces?

The next section on Gravitational Engineering covers how two proposed additional gravitational forces could couple with electromagnetism to generate propulsive forces for spacecraft and other uses, and how the extreme gravitomagnetic fields generated would have far reaching consequences for technology.  Yet it does require novel physics.  In EHT there exist three different gravitational constants termed Gp, Ggp, Gq, where Gp is defined as the gravitational hadron-hadron coupling constant, contrasted with the gravitational hadron-lepton interaction denoted by Ggp. The gravitational interaction between two atoms is given by Newton’s constant GN = Gp + Ggp. If the interaction with the spacetime field is included, then the gravitational constant is named after Einstein GE = GN + Gq which is discussed in greater detail in Part II.

Discussion continues on the Physical Reality of Extra Dimensions.  The authors suggest that the concept of extra real dimensions could be replaced by the idea of extra number systems.   Recall that extra real dimensions are part of superstring theory.  Superstring theory is a shorthand for supersymmetric string theory because unlike bosonic string theory, it’s the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity (i.e., supergravity).  Yet no predicted supersymmetric (SUSY) particles (e.g. neutralino, squark, antisquark) have been found.  None of the physical features that are based on the existence of extra spatial dimensions have been confirmed. 

Before their brief Conclusions, the authors finally explore an extension of the Fundamental Laws of Physics proposed by EHT.  They recap that:

  1. The standard model of four-dimensional spacetime has been confirmed
  2. Observations question the presence of dark matter within galaxies
  3. The model of cold dark matter (CDM) is in agreement with the observed large structures of the Universe …
  4. … but on the small scale, namely on the galactic scale, the model is not capable of reproducing the angular momentum of galaxies, according to observations. 
  5. CDT suggests that wormholes do not exist and spacetime is simply connected (i.e., no wormholes) and has a de Sitter topology (not Anti-de-Sitter), 
  6. No infinities or singularities in physics
  7. Total energy must be equal to zero (which has implications for the Big Bang)
  8. The duality of nature (particle/antiparticle, wave/particle, spacetime/dark energy) is the guiding principle

The authors conclude by saying that, “… a paradigm shift in our understanding of the Cosmos should be considered… concerning the nature of matter as well as physical reality.”  They believe that Nature has chosen a different path than utilizing extra dimensions and that an extension of the system of numbers is proposed as an alternative, as extensively discussed by Sir Roger Penrose, leading to both different types of symmetries (groups) and suggests additional types of matter. 

© 2018 Gregory Daigle

Author’s note:  The notion of extended number systems as predictors of physics has been considered by Penrose and also by others.  For example, mathematician Cohl Furey built on the work of Murat Günaydin on the relationship of fundamental physics to pure math and suggests that the forces and particles that comprise reality spring logically from the properties of eight-dimensional octonions algebra. Furey has written how use of octonions in Gunaydin and Gursey’s early models show quarks and anti-quarks, but that extending those models results in a set of states behaving like the eight quarks and leptons.  This mirror’s EHT’s eight-dimensional “Heim space” to describe every group of particles and forces through its derivation of physics from quaternionics, octonionics and sedenionic (to explain coupling constants).  Hauser and Dröscher use octonions to lead to the novel concept of matter flavor and explain the different measured lifetimes of the neutron (as will be reviewed in Part II).

The AMS-02 instrument, shown here attached to the outer hull of the ISS. Credit: NASA

AMS-02 findings are consistent with EHT

As reported in TrendinTech and in other sources, papers published in Physical Review Letters on experiments using the Alpha Magnetic Spectrometer (AMS-02) on the ISS have given an indication of the mass of dark matter particles. The original article can be found here:

Two papers posit that WIMPS (Weakly Interacting Massive Particles) are dark matter (DM) particles and that their annihilation produces antiprotons detectable by the AMS-02. After eliminating those cosmic rays originating from other sources both teams formulated the resulting mass of the DM particles.

The team led by Alessandro Cuoco analyzed data of a DM signal that would match a dark matter particle with a mass of 80 GeV, 85 times the mass of a proton or an antiproton. Another team gave a similar result, estimating their results from a different premise but calculating that the mass of a dark matter particle would be 20-80 GeV.

The results have similarly been reported from PhysicsWorld:

“Writing in Physical Review Letters, Alessandro Cuoco and colleagues at RWTH Aachen University in Germany describe how they analysed antiproton, proton and helium cosmic-ray detection rates by AMS – which is located on the International Space Station – and other experiments. They found that the creation of antiprotons by the annihilation of dark-matter particles with masses of about 80 GeV/C2 provided the best explanation for why AMS has detected more antiprotons than expected to be created by conventional astrophysical process.”

How do these results compare to those projected in the book by Hauser and Dröscher on Extended Heim Theory in 2015? Here are some outtakes from their book regarding calculations from Extended Heim Theory about dark matter particles:

“… dark matter is assumed to be of negative mass existing in the form of a heavy particle with mass mdm approximately -80.77 GeV, and a dark matter neutrino with a negative mass mvdm approximately -3.2 eV.”

They continue, “…because of the negative mass of the dark matter particles, they should neither be present in the reactions of the LHC [Large Hadron Collider] experiments, nor be found in any dark matter experiment… since dark matter particles are supposed to carry negative energy and cannot be generated in an accelerator…”

I asked Prof. Hauser about these findings. He made several points:

1. At 80 GeV LEP, Fermilab, and LHC should have detected such a particle a long time ago. There has been no detection at these facilities.
2. If we take the AMS data seriously, we are forced to conclude that a dark matter particle can decay from the dual de Sitter space time, appearing as a proton-antiproton pair in our de Sitter spacetime.

The dual space would act as a source of energy for our spacetime. Assuming that energy is conserved over cosmic time scales, there should exist an equilibrium between dark energy (DE) and dark matter (DM) as already suggested in their book. At some point over cosmic time that equilibrium between mass in de Sitter space and mass in the dual de Sitter space may shift (see previous articles on DM and DE) and cosmic expansion may reverse itself.

Dr. Hauser poses the question of how our spacetime and the dual spacetime interact. Is there a slow progression from DE to DM to baryonic matter (BM)? If the equilibrium shifts from DE to DM to BM might our universe’s expansion eventually reverse and begin to contract? If so, would energy slowly be squeezed back into the dual de Sitter space?


©2017 Jet Flyer LLC

Credit: APS/Alan Stonebraker; galaxy images from STScI/AURA, NASA, ESA, and the Hubble Heritage Team

Gravity Beyond Einstein

It is interesting that in recent months two new theories have been proposed that run counter to conventional theories of dark matter that depend upon exotic baryonic matter.

One such paper on dark matter has arisen from M-Theory, suggesting that dark matter is not a particle in our spacetime but rather is in a hidden sector.  B.S. Acharaya, et al. in The lightest visible-sector supersymmetric particle is likely to be unstable, suggests that what has been known as dark matter is not a particle with Standard Model quantum numbers, such as a WIMP, but rather is due to hidden sectors that interact with our visible sector via gravitational interactions only.

As quoted in PhysOrg,”In the proposed scenario, dark matter consists of particles in the hidden sector that communicate through a portal from the hidden sector to the visible sector, and in this way exert the gravitational effects that scientists have long observed.”

Also in PhysOrg, string theorist Erik Verlinde’s theory of emergent gravity is another outlier theory that runs counter to more traditional view of dark matter. As described in PhysOrg by the Netherlands based Delta Institute for Theoretical Physics, “Emergent gravity, as the new theory is called, predicts the exact same deviation of motions that is usually explained by invoking dark matter… In 2010, [Prof] Erik Verlinde surprised the world with a completely new theory of gravity. According to Verlinde, gravity is not a fundamental force of nature, but an emergent phenomenon.”  In his paper, Verlinde states that, “the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter”.  See

The first test of Verlinde’s theory of emergent gravity has been found to agree with his predictions.  As also mentioned in PhysOrg, “A team led by astronomer Margot Brouwer (Leiden Observatory, The Netherlands) has tested the new theory of theoretical physicist Erik Verlinde (University of Amsterdam) for the first time through the lensing effect of gravity. Brouwer and her team measured the distribution of gravity around more than 33,000 galaxies to put Verlinde’s prediction to the test. She concludes that Verlinde’s theory agrees well with the measured gravity distribution. The results have been accepted for publication in the British journal Monthly Notices of the Royal Astronomical Society.”  See

Yet these theories are not the first claimants to pose such alternatives to explaining dark matter without exotic baryonic matter.  The first was Extended Heim Theory and its proponents Walter Dröscher  and Jochem Hauser.  Two years ago Walter Dröscher published Reality of Gravity-Like Fields? Part I: Recents experiments that challenge conventional physics and made a similar proposal about the nature of dark matter and its relationship to dark energy.

A year later in their book “Introduction to Physics, Astrophysics, and Cosmology of Gravity-Like Fields,” Dröscher and Hauser detailed a discussion in Secs. 9.10.4 Dark Energy and Dark Matter and 9.10.5 MOND Acceleration (pp. 366-374) where they talk about the polarization effect of baryonic (visible) matter on the distribution of dark energy.  Such polarization is similar to one of the claims made by Verlinde.

Brouwer’s paper supporting Verlinde’s theory of emergent gravity found that “the lensing profile of apparent [dark matter] in [emergent gravity] is the same as that of the excess gravity in MOND…”  The MOND (MOdified Newtonian Dynamics) hypothesis, proposed by Milgrom in 1983, correctly describes the dynamics of stars and gas within galaxies, without providing any physical argument. The numerical predictions of MOND are correct, but in the meantime dark matter has been discovered, so that the original intention of MOND is no longer valid. However, any valid theory of gravity must be able to match the MOND predictions, because they reproduce the observed data, including the most recent data by S. S. McGaugh.

A new paper in preparation by Hauser and Dröscher, Gravity Beyond Einstein? Part I:  Physics and the trouble with experiments, provides a review of the latest experimental results in quantum physics and astrophysics, discussing their repercussions on the advanced physical theories that go beyond both SMs (standard models) of particle physics and cosmology.

In their paper they address a series of papers S. S. McGaugh, et al. that found corroboration of MOND.  McGaugh found that the distribution of dark matter, characterized by its radial acceleration value (toward the galactic center) gdm, follows directly from the baryonic mass (stars and gas), reflecting a strong coupling between dark and baryonic mass, but is independent of dark halo models.

Hauser and Dröscher’s paper states,

Their (McGaugh, et al.) data are based on the Spitzer Photometry and Accurate Rotation Curves (SPARC) database of 175 galaxies of widely different type and show only very little scatter. That is, the connection between baryonic mass and rotation velocity is pronounced and no adjustable parameters were used. Indeed, the one-to-one correspondence between the acceleration resulting from the baryonic mass, gbar, and the observed acceleration gobs, may be considered as a hint that the baryons only are the source of the gravitational potential.  In this case, the laws of dynamics need to be altered, replacing the dark matter concept. However, according to EHT, this is not the case, Newtonian dynamics prevails, but, instead, dark matter particles, which are of negative mass, do reside in the so-called dual space (imaginary time coordinate, see above) rather than in four-dimensional spacetime. Only their gravitational potential is experienced in our spacetime, but there are no dark matter particles present.

They continue, “The deviation from Newton’s law of gravitation as observed by McGaugh et al. may be explained by the polarization effect on the dark energy distribution by the high matter density within galaxies …”

So in one statement, Hauser and Dröscher suggest not only a mechanism for MOND, but also give an alternative explanation to Verlinde’s proposal that baryonic matter impacts the displacement of dark energy (see previous blog postings in this website on the relationship with dark matter according to EHT) and that, similar to B.S. Acharaya, dark matter interactions with our spacetime occur only through gravitational interactions. The question therefore remains: what is the gravitational phenomenon responsible for the MOND acceleration as measured by McGaugh? For that insight the discussion will be resumed in their subsequent companion paper.

Here is the conclusion of their paper (which addresses much more than reported here):

Weighing the experimental evidence presented, we think that a paradigm shift in our understanding of the Cosmos is mandatory, paving the road to a different age (as pointed out in Chap. 11 of [their book]), marked by an overthrow of the present Weltbild of physics, in particular, concerning the nature of matter as well as physical reality.

Before the next collider generation actually is being built, the relatively simple gravitational experiments discussed above should be repeated at several laboratories applying much more sophisticated equipment. If the results of these experiments can be confirmed, then it is evident that Nature has chosen a different path than utilizing extra dimensions.

The physical alternative proposed to the extension of spatial dimensions could be the extension of the system of numbers, first suspected by Pythagoras and extensively discussed by Sir Roger Penrose in his comprehensive œvre, e.g. [“The Large, theSmall and the Human Mind“] etc.  As will be presented in [their upcoming paper] this approach should be leading to both different types of symmetries (groups) and matter.

In 1946, the U.S. government funded a comprehensive feasibility report, prior to any hardware activities, termed Preliminary Design of an Experimental World-Circling Spaceship by F. H. Clauser et al., Douglas Aircraft Company that marked the beginning of the era of spaceflight. Given the current theoretical and experimental hints, we seem to be in a similar situation today regarding the preliminary design of a gravitational-field propulsion device. Whether the success story will turn out to be similar cannot be decided at the moment. On the other hand, it is evident that for a risk averse society the chance of success is close to zero.

©2017 Jet Flyer LLC

Novel physics — incomplete physics

In their book  “Introduction to Physics, Astrophysics, and Cosmology of Gravity-Like Fields”, authors Drs. Jochem Hauser and Walter Dröscher posit what they believe to be shortcomings of several mainstream ideas in physics.

Below are selected outtakes from the book positioned as a brief listing of what EHT considers as incomplete or incorrect mainstream ideas in physics and what EHT offers as novel ideas in physics that often runs counter to mainstream thinking.  Each of these ideas are explored in depth in the book, so I won’t even attempt to represent the evidence provided to back up these discussions since each could take pages of citations and calculations, which have already been offered by the authors.

Finally, I am certain that there are several novel proposals made by the authors of EHT which I have glossed over or missed completely, such is the wide ranging impact of the EHT model.

What EHT identifies as incomplete or incorrect ideas in physics:

There is no experimental basis for supersymmetry and superstring theory as extensions of the standard model of particle physics.

CDT (Causal Dynamical Triangulation) computer simulations reveal a spherical spacetime topology (de Sitter space), and thus the viability of wormholes and time travel now seems exceedingly unlikely.

There are neither singularities, nor infinities in physics.  All physical quantities must remain finite.

There is no multiverse.  All other potential universes cancel out.

The Universe must be closed, but might be cyclic.

There is no continuous spacetime.  At the Planck length, all of spacetime is discrete.

There are no extra real spatial or real time dimensions greater than four when above the Planck length.

There exist no genuine static states in physics, and no static Universe.  Everything in the Universe must be in motion.

Dark matter cannot be made of superpartners, WIMPS or super-WIMPS.

There is no neutralino particle that can explain dark matter.

Novel physics proposed by EHT:

EHT is an approach to geometrize physics but not completely, as envisaged by Einstein or later by Heim.  Geometry alone is not physics.

EHT provides a classification scheme for particle families and physical interactions, but is not a genuine physical theory of elementary particles or gravitation.

EHT is a polymetric tensor theory, in contrast to Einstein’s monometric tensor theory of general relativity (GR).  EHT is a super set of GR.

EHT postulates the existence of six fundamental forces, including three gravitational forces along with the known electromagnetic, weak and strong forces.

EHT should be considered as a phenomenological model to explain the existence of the six fundamental forces.

EHT employs quaternionic and octonionic complex number calculations to derive its predictions for particles and subspaces.  This allows for negative masses and energies.

Spacetime is discrete or quantized at the Planck level.

One new gravitational interaction (force) is the gravitophoton interaction (particles are both attractive and repulsive).

Another new gravitational  interaction (force) is the quintessence interaction (particles repulsive), responsible for the interaction with the spacetime field (de Sitter space).

Each of the two new gravitational interactions have their own associated gravitational constant resulting in different speeds of light (c): Ggp (gravitophoton) is 158,000 times c.  Gq (quintessence) is 25,000,000,000 times c.

The existence of spacetime is the cause of dark energy (precursor of matter) and vice versa.

The structure of spacetime and the field of dark energy were generated at the same instant, being inextricably linked together and entangled.

There is no inflation field.  It is dark energy.

There are two dark matter particles, both possessing negative rest mass and existing in a dual de Sitter space, making them undetectable by the LHC facility.

Dark matter, being outside our spacetime, can not be detected but its gravitational interaction with ordinary matter can be felt in our spacetime.

Design implications from Chapter 7 of the upcoming Nova Book

In the upcoming book, New Frontiers in Space Propulsion, chapter 7, Elementary Primer of Field Propulsion Physics, was authored by Walter Dröscher and Jochem Hauser.  They make several interesting points about generating extreme gravitomagnetic fields that have not previously been addressed in their writings but which add new depth to their writings on the topic.  This will likely be expanded upon in their upcoming book, Introduction to the Physics and Astrophysics of Gravity- Like Fields.

Although much of the text in that chapter summarizes past points of discussion, these new points either reinforce directions in their research or suggest new potentials with design implications.  The following text either paraphrases or takes verbatim the statements of those authors.  I follow that content with some suggestions of design implications.

1. The example of a laboratory experiment is calculated to produce a relatively large acceleration of gG = 0.32g, where g denotes the acceleration of the Earth.  It will be described in section Setup of the Heim Experiment in their upcoming book Introduction to the Physics and Astrophysics of Gravity- Like Fields.

Design Implications – If an axial acceleration force of approximately a third of Earth’s gravitational field can be generated in a laboratory experiment, it would be an extraordinary event requiring extraordinary evidence and likely requiring multiple replications to be validated.  One interesting methodology to accelerate the replication would be to “open-source” the experiment through online and live streaming of data such as can be found at the Martin Fleischmann Memorial Project.

2. We do not know the exact spatial extension and shape of the gravity-like field as well as its acceleration effect on the total mass of the space vehicle. The gravitomagnetic field as generated by Tajmar et al. has at least an extension of several centimeters, the Nb ring has a diameter of 15 cm.

Design Implications – If an axially generated extreme gravitomagnetic field is short in range, similar to the several centimeter field generated by the circumferential gravity-like field generated by Tajmar et al., then it suggests a more proximal rather than distal effect on objects.  Though some authors have suggested the possibility that long range gravitational pulses could be generated (Podkletnov, for example), a short range effect would mean that the field could still encompass a generating device, but projecting fields at distances for shields, tractor effects, etc. on distant objects would be less likely.  The shape of the field is also unknown, but if intersecting fields might influence the overall shape of a field (similar to intersecting magnetic fields) then some distortion or reshaping might be possible.

3. The strength of the extreme gravitomagnetic field might be due to the existence of anyons.  Anyons are particles introduced by F. Wilczek (Anyons, Scientific American, May 1991) that are suggested to be generated through symmetry breaking , triggered by cryogenic temperatures or material composition.  For instance, there are crystal structures that possess surface layers of only few atoms thickness such as copper oxide high-temperature superconductors that are composed of planes of atoms stacked on top of one another.

Design Implications – This suggests that thin flat films, coatings or layers might generate a field stronger than a bulk material.  Not only might this reduce the costs by allowing a thinly coated disk, ring or sphere to take the place of thicker (hence more expensive) materials, but also that modulation of the thin film might be used to direct or concentrate the field.

4.  A gravity-like field generator operating at ambient temperature would be the ultimate field propulsion device.  In the same sense as a high-temperature superconductor is the ultimate goal in superconductivity research, a  gravity-like field generator operating at ambient temperature would be the ultimate field propulsion device.  In Introduction to the Physics and Astrophysics of Gravity- Like Fields  the authors are said to discuss a combination of 20 materials and their arrangement that, according to their “Gedanken experiment”, might have the desired properties to generate extreme gravity-like fields at ambient temperatures. An ambient-temperature gravity-like field generator would encounter obstacles, just as are the experimental difficulties of producing a technically feasible high-temperature superconductor.

Design Implications – If generating an extreme gravitomagnetic field is as difficult a process as discovering materials for generating practical ambient-temperature superconductors then this is a great challenge.  However, it should be noted that isolated detection of superconductors at temperature higher than that of some solder alloys have been reported, though preparation and other requirements of these materials keep them from being easily manufactured or maintained.

5. The existence of three gravitational constants gives rise to three different propagation speeds.  That is,

Screen Shot 2015-06-15 at 11.11.10 PM

It is therefore conceivable that spaces exist that may allow for propagation speeds cgpor cq. It is not known how a material body could enter and leave such a hypothetical hyperspace, nor would we know how to navigate in such a space.

Design Implications – Droscher and Hauser’s original award winning AIAA paper, “Guidelines for a space propulsion device based upon Heim’s Quantum Theory” in 2004 discussed the possibility of transitioning to this hypothetical hyperspace (while at ambient temperature).  Certainly, entering hyperspace to reach a theoretical speed more than a billion times the speed of light would have far-reaching implications for interstellar travel without need for wormholes or “warp” drives.

New Frontiers in Space Propulsion

The publication of an upcoming book edited by Takaaki Musha has been announced for the third quarter of this year.  Chapter 7 has been authored by Jochem Hauser and Walter Dröscher and is entitled, “ELEMENTARY PRIMER OF FIELD PROPULSION PHYSICS”.  I was very happy to have participated in the editing of that chapter for the authors.

Here is the description of the new book from the Nova Science Publishers, Inc site:

New Frontiers in Space Propulsion.  ISBN: 978-1-63482-845-1

Editors: Takaaki Musha (Advanced Science-Technology Research Organization, Yokohama, Japan)

Book Description: 

As we know, reaching the outer rim of the solar system in a relatively short period of time is impossible utilizing existing rocket technology. Radically ventured theories such as quantum vacuum propulsion must emerge if we have any desire to truly explore the far reaches of space. New concepts must be explored that may someday enable manned interplanetary and interstellar travel. With this in mind, it is imperative for scientists to study and create new forms of space trajectory to achieve this goal. New propulsion physics for such means may or may not be discovered in the future. In this book, the science behind ideal methods of space propulsion (such as warp drive and gravity-control) are examined to show connections between known facts, anomalies and visions concerning this study. This term is known as “frontier physics”; scientists presently use accepted physical paradigms to speculate and hypothesize forms of physics that will aid in future developments. In this case, that development is advanced methods of space propulsion.

Throughout this book, eminent researches discuss an overview of new propulsion systems which cannot be achieved by the conventional propulsion systems. Some methods that surpass modern study which would aid in the development of advanced space propulsion includes zero-point energy, quantum electrodynamics, space-time curvature and faster-than-light warp drive travel. It is hoped that these topics will assist readers in their journey to understand progressive studies of space propulsion systems. (Imprint: Nova)

Book Reviews

“A fascinating work covering the newest and most revolutionary ideas for space propulsion systems. Within the pages are ideas which will lay the foundation for mankind to truly reach out and touch the worlds around other stars.” – Reviewed by Grant Hayman of OVAL Technologies, Canada

“This book has been endorsed by the Journal of Space Exploration for its contributions to advanced space propulsion science, – which include approaches based upon fusion technology, photonic drive, Einstein’s general relativity theory, zero point energy, quantum electrodynamics, space-time curvature, electromagnetoroid dynamics, and warp drive for faster-than-light travel, that will contribute readers to know on the field of advanced space propulsion systems.” – Endorsed by Editor-in-Chief, Journal of Space Exploration

“In order to reach the outer rim of the solar system in a reasonable amount of time, new concepts must be explored that could someday enable such manned interplanetary and interstellar travel. Radically advanced space propulsion concepts, such as quantum vacuum propulsion and warp drive that rely on physics outside the present paradigms must emerge in the near future if we have any hope of human exploration of deep space. Throughout this book, these topics are discussed by eminent researchers which collectively provide an overview of a range of new propulsion concepts. For the purpose of manned space flight, interplanetary travel and interstellar travel could not be achieved by the conventional chemical propulsion systems. Concepts included in this volume include approaches based upon fusion technology, photonic drive, Einstein’s general relativity theory, zero point energy, quantum electrodynamics, space-time curvature, electromagnetoroid dynamics, and warp drive for faster-than-light travel. It is hoped that these topics will contribute reader’s knowledge of advanced space propulsion systems.” – Reviewed by Gary Stephenson, Aerospace Systems Engineer, Seculine Consulting, Redondo Beach, CA

Price: $210.00

Table of Contents:



New Frontiers in Space Propulsion Science Part I- The Environment and Some History Related to ‘Advanced’ Space Propulsion Science – (P. A. Murad, Morningstar Applied Physic, LLC, Vienna, VA, USA)

New frontiers in Space Propulsion Science Part II- Approaches to Push the New Frontiers – (P. A. Murad, Morningstar Applied Physic, LLC, Vienna, VA, USA)

Fusion Space Probe-Viper – (Akshata Krishnamurthy, George H. Miley, University of Illinois at Urbana-Champaign, IL, USA)

The Photonic Railway – (Young K. Bae, Y.K. Bae Corporation, Tustin, CA, USA)

General Relativistic Gravity Machines and Electromagneto-Toroidal Structure of E-M Field – (Takaaki Musha, Mario J.Pinheiro, Advanced Sci.-Tech. Research Organization, Yokohama, Japan, and others)

Possibility for Exploiting Zero-Point Fields of the Quantum Vacuum for Propulsion – (H. David Froning Jr, Department of Mechanical Engineering, University of Adelaide Adelaide, South Australia)

Elementary Primer of Field Propulsion Physics – (Jochem Hauser, Walter Dröscher, HPCC-Space GmbH, Hamburg and Ostfalia Univ. of Applied Sciences, Suderburg, Germany, and others)

On the Possibility of ZPF Space Propulsion Systems – (Takaaki Musha, Advanced Science-Technology Research Organization, Yokohama, Japan)

Space Drive Propulsion System Founded on the Continuum Mechanics of Space-time – (Yoshinari Minami, Advanced Science-Technology Research Organization (Formerly NEC Space Development Division), Japan)

Faster-than-Light Travel to the Stars – (Gary L. Bennett, Consultant in aerospace power and propulsion systems, Boise, ID, USA)


The physics of Hollywood’s blockbuster movie Interstellar

In November of last year Dr. Jochem Hauser wrote an interesting article on “The physics of Hollywood’s blockbuster movie Interstellar“, which discusses some possible inaccuracies of the movie despite the guidance of its science advisor, Dr. Kip Thorne.  An interesting and sobering view of conflicts in the physics community popularized through the reach of film.  The above link goes to the pdf of the article.

Journal of Space Exploration papers now available.

MehtaPress has now published Volume 3, Issue 2 of the Journal of Space Exploration. It contains six papers on gravity-like fields, gravity-superconductors, the speed of gravity and other topics. Two of the papers are from the co-authors of Extended Heim Theory. I have attached links here for readers.

Unfortunately, an error by the publisher has delayed the inclusion of my paper, but the indication is that it will be included in the publication by December 1.

Walter Dröscher, “Reality of gravity-like fields? Part I: Recent experiments that challenge current physics”

Jochem Hauser, “Reality of gravity-like fields? Part II: Analysis of gravitomagnetic experiments”

In the second paper is the description of a possible method for testing the validity of the theory.









Wave character of neutrons, first demonstrated by H. Rauch in 1974. Instead of an electromagnetic vector potential A the extreme gravitomagnetic potential Agp will be used, leading to a gravitomagnetic Aharonov-Bohm effect (as suggested to M. Tajmar by the author). That is, the wedge is replaced by the Agp field, while the left path is subject to a much weaker gravitomagnetic field, and thus a phase difference will be produced. A detailed analysis has to show, whether the predicted field strength is sufficient to produce a detectable phase shift. The ring (upper left) denotes the asymmetric position of the gravitomagnetic potential Agp.

Three publications by the originators of EHT











I have three publications to share with the readers through the generosity of Prof. Dr. rer.nat. Jochem Hauser.

The first is his review of the book “Gravity-Superconductor Interactions: Theory and Experiment”, first published in 2012.  Editors: G. Modanese, G. A. Robertson.  Dr. Hauser also includes a short mention of my and my book.  Please click HERE to launch the Acrobat (PDF) file of the book review.

The second is Chapter 11 of the same edition, entitled Emerging Physics for Gravity-Like Fields written by  Walter Dröscher and Jochem Hauser.  It also contains the Foreword to the edition.  Here is the abstract:

Abstract: Based on theoretical ideas under development since 2002, termed Extended Heim Theory (EHT), as well as experiments performed at AIT Seibersdorf, Austria since 2006, it is argued that there is evidence for the existence of novel gravity-like fields and thus also different types of matter. These gravity-like fields are not described by conventional Newtonian (Einsteinian) gravitation, i.e., by the accumulation of mass. Instead, under certain conditions, they should be producible in the laboratory by small ring or disk shaped masses rotating at cryogenic temperatures. EHT, in describing these novel fields, postulates six fundamental physical interactions, three of them of gravitational nature. The two additional gravity-like fields may be both attractive and repulsive. It is further argued, based on both EHT and experiments, that these gravity-like fields are outside the known four physical fundamental forces, and may result from the conversion of electromagnetic into gravitational fields. The gravitomagnetic effect of these fields is found to be some 18 orders of magnitude larger than classical frame dragging of General Relativity. This fact seems to be in accordance with recent experiments performed at AIT Seibersdorf. A non relativistic semiclassical model will be presented as an attempt to explain the physical nature of the novel gravity-like fields. There seems to be a special phase transition, triggered at cryogenic temperatures, responsible for the conversion of electromagnetic into gravitational fields. The features of the six fundamental physical interactions are utilized to investigate the potential of the novel gravity-like fields for propulsion purposes as well as energy generation.

Please click HERE to launch the Acrobat (PDF) file of Chapter 11.

Finally, in preparation for the publishing of the sixth (special) issue of the Journal of Space Exploration, Dr. Hauser has generously allowed me to post the Foreword for that issue.  Please click HERE to launch the Acrobat (PDF) file of that foreword.


EHT as a mechanism for MOND

EHT gives rises to six fundamental forces, three of them of gravitational nature, and thus could lead to a novel type of propulsion without propellant. The following are quotations from a 2012 paper by Droscher and Hauser. It suggests that one of the three gravitational forces acts upon spacetime and underlies the cosmological constant responsible for the expansion of the universe. It is postulated that negative dark energy (attractive field) is attracted to the matter inside of a galaxy and that its antiparticle (repulsive field) is repelled by the interior matter and collects in the galactic halo where dark matter resides. This makes it a candidate for the explanations behind MOND, a leading alternative to dark matter that has been found to accurately predict the speed of stars within dwarf galaxies.

On the Reality of Gravity-Like Fields
AIAA 2012-2491
48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
29 July -1 August 2012, Atlanta, Georgia

“It is assumed that the dark energy is composed of both repulsive and attractive fields and only the combined action is perceptible in empty space. Inside galaxies, because of the large density of visible matter, the attractive field is neutralized and an additional gravitational interaction mediated in form of the MOND acceleration a0 has to be taken into account.”

“Since no dark matter seems to reside within galaxies (ESO observations, June 2012), but, on the other hand the deviation from Newton’s law has been experimentally verified by McGaugh (February 2011), only the interaction of dark energy with visible matter inside the galaxy and the interaction with dark matter in the galactic halo remain to account for this modification of the gravitation law. Since the MOND hypothesis seems to give the correct value, any derivation should reproduce this value. As the measurements by Reyes and also galactic gravitational lensing have shown, both visible and dark matter are subject to Newton’s gravitational law.”

“Moreover, since strong gravitational lensing is observed, galaxies must possess dark matter. Therefore, the physical mechanism for galactic halo formation has to be found, while, at the same time, the non-existence of dark matter inside galaxies must follow from the the same physical concept, and, finally, the correct value of the MOND acceleration needs to be produced. So far, no physical theory exists. Therefore, the attempt is undertaken to apply the novel concepts of EHT to try to solve this riddle.”

“According to Loll et al. the computer simulations from Causal Dynamical Triangulation (which is a Monte Carlo simulation of the path integral for the action of GR, or summation over universes) without cosmological constant Λ > 0 do not lead to a four-dimensional spacetime in the classical limit. In other words, a repulsive gravitational force is mandatory, and thus the assumption of the existence of dark energy is justified also by computer simulation.”

“It is known that within a galaxy, cosmic expansion does not take place. Instead, an additional acceleration field, a0, directed toward the center of the galaxy is present. Since dark matter cannot be present inside a galaxy, the existence of attractive dark energy is postulated, which according to EHT, would be represented by the antiparticle of the quintessence particle νq.”

“The question arises, how the large density of ordinary matter inside a galaxy – remember that dark matter cannot be present – does act on the mixture of positive and negative dark energy that is ubiquitous in the Cosmos? The result is known, namely that inside a galaxy an acceleration a0 = 1.2 × 10−10 m/s2 pointing toward the galactic center must be obtained. Obviously, it can only be caused from the presence of negative dark energy (attractive gravitation), residing inside the galaxy, which is attracted by the visible matter inside as well as the dark matter in the halo of the galaxy. Both types of dark energy, positive (repulsive) and negative (attractive) are present throughout the Universe, but in the current era | Λ |>| Λ+ |, and thus a resulting force leading to an expansion is acting on the space field.”

“However, as will be shown next, the effect of Λ+ (contracting spacetime, but being repulsive with regard to the matter inside the galaxy because of its negative energy) is neutralized inside a galaxy, and therefore inside the galaxy only the attractive gravitational effect of Λ on ordinary matter (both visible and dark) remains. The reason why the Λ+ is neutralized inside a galaxy, is due to the fact that a galaxy contains a large amount of ordinary matter, where visible matter is inside the galaxy and dark matter resides in the halo, with about 80% of the matter in the halo. To understand the qualitative physical mechanism of dark matter halo formation, consider a sphere filled with positive electric charges. It will repel particles arriving from outside the sphere that are of like charge, while attracting particles of negative electric charge. In the gravitational case, the νq particles are representing the cosmological Λ+ field and are repelled by the galactic matter, and thus are screened out. The νq particles, representing the Λ field are attracted by the galactic matter, and thus are collected mainly in the halo, where matter density is larger. Thus, a surplus of νq particles is collected in the halo and, to a lesser extent, inside the galaxy, resulting in an acceleration acting toward the center of the galaxy, which is known as the MOND acceleration, being prevalent for visible matter in the vicinity of the halo. In this way, dark energy in combination with the dark matter halo seems to be responsible for the observed MOND acceleration.”

[Formulas in the original document are not represented in this summary]