Category Archives: Theory

Advances in the theory of Extended Heim Theory

AIAA lecture series

The American Institute of Aeronautics and Astronautics (AIAA) is sponsoring a dinner lecture series this month in Sacramento, California featuring a presentation by Dr. Jochem Häuser, co-author with Walter Dröscher on Extended Heim Theory.

The announcement reads as follows:

Dr. Häuser will be joining us from Saltzgitter, Germany, to present: Emerging Physics for Novel Field Propulsion Abstract: In this talk we present and discuss novel physical concepts that might lead to advanced space propulsion technology based on novel gravitational-like force fields. Such a propulsion technology would be working without propellant. This technology is based on the existence of two additional gravity-like fields, which are gravitational fields that are not described by conventional gravitation.

The paper begins with an introduction of the present theoretical and experimental concepts pertaining to the novel physics of these gravity-like fields. In the following section, the latest gravitomagnetic experiments performed at ARC Seibersdorf (2008) [refers to research by Dr. Martin Tajmar – editor] are analyzed, and a qualitative explanation for the highly varying measured results is given.

In section three, the physical basis (termed Extended Heim Theory, EHT) employed in the explanation of the ARC experiments is presented. EHT, based on the construction of a poly-metric (geometric approach), which is obtained by providing each point of external spacetime with an internal 8D space (Heim space), requires the existence of six fundamental interactions, three gravitational fields, which are both attractive and repulsive as well as the known electromagnetic, weak, and strong forces. Moreover, from the interpretation of the poly-metric, the existence of ordinary matter (fermions and bosons) as well as non-ordinary matter (virtual imaginary particles as well as stable neutral (heavy) lepton particles with rest mass) is postulated.

It is shown that conservation principles need to be applied to the complete physical system containing both types of matter. Furthermore, it is argued that the re-interpretation of the general symmetry breaking mechanism leads to virtual particles of imaginary mass, which in turn, should be responsible for the conversion of electromagnetic into gravitational energy (ARC experiments).

In section four, based on this conversion, the physical mechanism underlying the ARC experiments is discussed and comparison of EHT predictions and measured results are given. Arguments will be provided to ensure the consistency of the ARC measurements. The last section, based on the results of EHT, is dedicated to describe a novel experiment for the generation of a gravity-like field (acceleration field) that could serve directly as a propulsion principle, since the direction of the force should be along the axis of rotation of the disk (ring in ARC experiments) and not in the circumferential direction as is the case in the ARC experiments. Furthermore, the scaling of this experiment will be discussed and calculations will be given that show that a substantial force should be producible with current technology.

In the Conclusions the validity and consistency of gravitomagnetic experiments performed is argued and their relation to the existence of six fundamental forces is debated. The widespread scientific and technological consequences of gravity-like fields in the general area of transportation (earthbound, air and space), physics as well as cosmology are also outlined. Finally, recommendations are made how the state of gravity-field like research could be advanced both theoretically and experimentally.

Friday, March 13, 6-8:30pm, $15 – Students $20 – Members $25 – Non-Members

Tenuous connections – part 1

Hollingshead – Wallace – Dröscher/Hauser

The following discussion attempts to articulate some similarities between mechanisms behind Dröscher and Hauser’s (D&H) Extende Heim Theory (EHT) and Hollingshead’s Marcus Device. Connections between the nascent EHT and Hollingshead’s unproven technology are extremely speculative yet intriguing.

The inventor Marcus Hollingshead (referred to in earlier entries here and here) stated several years ago that according to analysts at a Cambridge physics lab a proton is “pushed to become a neutron” in the nuclei of his device’s central iron “Rp”. The result according to Hollingshead is the production of local gravity lensing, cooling effects, force fields and also “by-products” (ionizing radiation) which presumably are due to a nuclear mechanism.

Hollingshead hypothesized no specific nuclear mechanism, but I have often wondered if other gMOD claimants may have posited a nuclear mechanism for devices exhibiting similar side effects. There is one: Henry Wm Wallace.

Is Wallace’s proposed nuclear mechanism a good fit for Hollingshead’s claims? I’ll save the look at claimed force field similarities for a later date. Today the focus is upon potential mechanism and reported similarities in cooling effects.

Comparisons to Wallace

The mechanism for the heat pump lowering the temperature (down to 100K) of Hollingshead’s Marcus Device may have been elucidated within Wallace’s US Patents No. 3626606 and 3823570. Wallace, a scientist at GE Aerospace, was issued patents in the early 1970s for the generation of a time-variant “kinemassic” (gravitomagnetic) field. He posited that a refrigeration effect concomitant with a gMOD effect was due to “polarization of the spin nuclei of the lattice structure due to the polarization effects of the applied kinemassic force field.  The polarization results in a change in the specific heat property of the crystal material“. As a result the lattice vibrations (phonons) within a target crystalline structure established an appreciable temperature reduction.

Wallace posited that by aligning the nuclear spin of materials having an odd number of protons and neutrons (any material with an odd number of protons and neutrons is a fermion) greater order is created in the material thus resulting in a change in specific heat. Heat flows away from the material and thus it acts as a heat pump.

The resultant precession of nuclear angular momentum was suggested to be similar to a rapidly spinning ferrous material. Wallace said that there was an analogy between un-paired angular momentum in these materials and the un-paired magnetic moments of electrons in ferromagnetic materials.

Wallace is unclear about his exact meaning of “polarization of the spin nuclei” and the magnitude of the effect. However, there is a well-studied phenomenon, dynamic nuclear polarization (DNP), which is a phenomenon that make possible highly accurate MRI medical imaging. DNP has been intensively investigated since the 1950s, primarily at low magnetic fields. DNP is considered one of several techniques for hyperpolarization, the nuclear spin polarization of a material far beyond thermal equilibrium conditions (down to cryogenic levels).

Thus a well-established phenomenon, DNP, which is achieved at low magnetic field strength could be a basis for Hollingsheads’ reported cooling effects if Hollingshead’s device can be tied to DNP.

Assuming Wallace’s nuclear mechanism underlies the cooling of the Marcus Device, does Wallace’s “ kinemassic force ” further connect to Dröscher and Hauser’s gravitophoton mechanism?

Comparisions to D&H

Dröscher and Hauser (D&H) and their Extended Heim Theory provide a theoretical basis for the experimental results found by Martin Tajmar. Tajmar’s results (as suggested by D&H) suggest a coupling to massive Cooper pair (electron pair) bosons produced by superconducting niobium.

In Tajmar’s experiments the superconductivity provides for spontaneous symmetry breaking, forming Cooper pairs occurs at very low temperatures responsible for the Meissner effect. This means that the magnetic field lines cannot penetrate into the medium and remains in a thin layer on the surface. D&H state, “Hence, there is a finite range electromagnetic field, which corresponds to a massive photon. The penetration depth of the field is associated with the wavelength of the photon and is mass is determined by its Compton wave length “.

According to D&H such coupling has much lower requirements in terms of magnetic field strength, current densities, etc. to produce an equivalent effect with fermionic coupling. Perhaps Wallace’s gMOD effect is due to bosonic coupling to the phonons in the crystalline lattice of his material, but fermionic coupling through the proton seems less likely to provide a measurable effect.

Where does this leave Hollingshead? His device employed low level magnetic fields suitable for DNP, but the lack of crystalline lattice materials (except perhaps for the existence of ferrite cubic lattice structures in his pure iron Rp) leaves us wanting a suitable boson candidate for coupling.

But if the materials of the Rp are lacking in suitability, perhaps its structure revives its candidacy. The Rp had an iron core surrounded by several layers of Kapton dielectric and thin (1.5 mm) iron shells. The electromagnet coils pulsed the Rp at closest approach but the dielectric would have isolated the depth of the magnetic field to the thickness of the shell, much like a ferrite ring isolates the field of an attached magnet. This depth of the shell is very much greater than a comparable penetration depth due to the Meissner effect, but perhaps it too generates a photon sufficiently massive.

Since the Marcus Device is a highly charged device (4.2 Kva in its iron core coils and capacitive Rp) perhaps this energetic state capable of producing ionizing radiation contributes to a massive photon… or does so enhanced by coupling to phonons in the crystalline structure of pure iron.

So some key questions for further inquiry are:

  • Do D&H’s proposed absorption of gravitophotons by protons also result in polarization of the spin nuclei? And if so, does this realignment lead to Hollingshead’s cooling effect?
  • Can gravitophotons (either attractive or repulsive) couple with phonons in crystalline lattice materials?
  • Does Hollingshead’s device produce finite range electromagnetic fields suitable for producing massive photons?

High vs Low Tc and Tajmar’s Results

In this blog’s posting of April 14, 2008, “Independent Support of Tajmar’s Theory” reported that Tajmar’s artificial gravity results appeared as temperatures approached that of low temperature (low-Tc) superconducting niobium. There was no such effect found for high-Tc superconductors composed of copper oxide compounds. Tajmar’s study did not explain why there should be such a difference, but should different mechanisms underlying low and high Tc superconductors be found it would add weight to his findings.

Tajmar’s theory depends upon the bosonic pairing of electrons known as “Coopers pairs”. Cooper pairs also exist for high-Tc materials, yet the question has remained until now whether Coopers pairs form in the “pseudogap”, that transition temperature just before high-Tc superconductivity. If found to form and if found to be based upon a mechanism different from low-Tc superconductivity it would bolster Tajmar’s findings.

Today researchers have confirmed with new imaging techniques that electron pairs do emerge in the pseudogap but employ mechanisms very different from theories for conventional low-Tc superconductors such as niobium.

As quoted in this publication), “Together, the existence of preformed electron pairs… should help clarify the picture of high-Tc superconductivity, Brookhaven physicist Peter Johnson said. For example, the findings rule out some theories to explain the high-Tc phenomenon…”, including certain “spin density wave” (SDW) and “charge density wave”(CDW) derived theories. Johnson’s findings are consistent with competing theories such as “Mott insulators” and “charge stripes” that do not apply to low-Tc superconductors.

This further reinforces the distinctions between conventional low-Tc superconductors and high-Tc superconductors that Tajmar found.

gMOD and the LHC

I’ve been asking my associates, who are more knowledgeable about Heim Theory, what impact the experiments being conducted at the Large Hadron Collider (LHC) would have on testing the validity of Heim Theory. Remember that Droscher and Hauser’s Extended Heim Theory has been the best theoretical model of Tajmar’s gravity generation results.

The LHC experiments include efforts to find supersymmetry particles as well as the Higgs boson, which is suggested as imparting mass to all other subatomic particles. However, Heim Theory is not dependent upon the Higgs mechanism for the concept of mass. According to hdeasy, a frequent poster on PhysOrg Forum, Heim Theory posits that mass is caused by a six dimensional cyclic process or flux. If this flux is open, you have virtual particles. If it closes to form a 6-D circuit, it gives a real particle whose mass is given by this 6-D flux.

No Higgs particle is needed as it is another mechanism for assigning mass. Note that of the six dimensions involved in assigning mass, three are like time. The other three are the familiar space dimensions (length, breadth, height).

Heim theory is based on quantizing space, in 2-D quanta of area (Planck length)*(Planck length) called metrons. This aspect is similar to Loop Quantum Gravity (LQG), a theory gaining acceptance over string theory. Find the Higgs and that is bad news for Heim Theory.

A Wikipedia article on Heim Theory which is viewed as a reliable non-technical discussion by Heim adherents, states “confirmation of supersymmetry … would falsify all existing versions of Heim theory, which are mutually exclusive with supersymmetry.” If results of the LHC experiments find no Higgs or superspartners (a feature of most versions of string theory) then that spells the end for the Higgs mechanism of mass and many versions of string theory.

The remaining alternative theories to Higgs and accounting for the breaking of electroweak symmetry (including Heim Theory) would gain new attention and scrutiny.

How likely is it that this long-suspected Higgs particle will not be found? Who else thinks that not finding the Higgs might be a more interesting outcome? Physicist Stephen Hawking for one.

Hawking told BBC Radio he’d bet US$100 that the LHC won’t find that tiny Higgs particle. While Hawking said the LHC’s conditions should theoretically allow it to be discovered, he said it’d be “much more exciting” if it didn’t — leading to his wager.

Professor Higgs, 79, who first postulated the existence of the particle 44 years ago, disagrees in a recent interview. “My understanding is he puts together theories in particle physics with gravity… in a way which no theoretical particle physicist would believe is the correct theory. From a particle physics, quantum theory point of view, you have to put a lot more than just gravity into the theory to have a consistent theory and I don’t think Stephen has done that. I am very doubtful about his calculations.

Gravity Probe B, Tajmar and EHT

During this year’s AIAA (American Institute of Aeronautics and Astronautics) Dröscher and Hauser presented their paper “Gravity-Like Fields and Space Propulsion Concepts” which drew comparisons between values predicted by EHT (Extended Heim Theory) and the troubled Gravity Probe B.

In May the Sr. Review Committee at NASA Headquarters did not grant the Gravity Probe B team its final funding extension. Gravity Probe B is a long-standing experiment to measure gravitational frame dragging. As reported in New Scientist, the probe’s data was unexpectedly noisy. However, Tajmar has explained the “noise” in a recent paper and in their AIAA paper Dröscher/Hauser explain how the “noise” is actually misalignment and frequency shifts that fall well within the expected values projected by EHT and its predicted two additional gravity-like fields.

The paper is also valuable in that it breaks into sections the the present experimental basis for the existence of these novel gravity-like fields, discusses the main physical features of EHT, discusses all relevant experiments, determines the nature and type of the fundamental interaction(s) responsible for gravitomagnetic effects, and finally, posits a novel experiment for the generation of a vertical gravity-like field that might serve as test for their propulsion principle.

In short, a very good summary article on where we are with gMOD as predicted by EHT. Finally, their closing remark gives a glimpse into their excitement. “Needless to say, control of gravity would lead to completely new technologies, comparable to the advent of electricity and magnetism in the 19th century.”

Field effects

Hauser and Droscher’s suggested reconfiguration of Tajmar’s original “Gravito Magnetic Experiment” (often abbreviated “GME”) to one that provides propulsive fields (GME 2) for flight represents only one potential field effect of gravity modification. In a cover story on Dr. Tajmar in New Scientist magazine. Tajmar said, “Levitating cars, zero-g playgrounds, tractor beams to pull objects towards you, glass-less windows that use repulsive fields to prevent things passing through. Let your imagination run riot: a gravitomagnetic device that works by changing the acceleration and orientation of a superconductor would be the basis for a general- purpose force field.”

Tajmar has also suggested the potential of building zero-g simulators on Earth, but since these and other effects are not propulsive how do we describe this new vocabulary of non-propulsive field effects from gravity modification?

Tajmar is not the first to describe various gravity field effects. Inventor Marcus Hollingshead suggested there were seven categories of fields in his interviews with Tim Ventura of American Antigravity. Though Hollingshead’s claims remain unsubstantiated, some of his designations can be instructive. This blogger wrote of potential applications of Hollingshead’s fields in OhmyNews, but it is time to revisit them in light of Tajmar’s foreshadowing of useful gravitomagnetic fields related to his discovery.

Glossary of Field Terms

The field names suggested here are purely descriptive and are yet to be demonstrated:

Propulsion – “Propulsive” motion of a device generating a gMOD field
Thrust – “Push” force on an object at a distance
Traction – “Pull” force on an object at a distance
Standing – “Shield” force pushing radially outward
Membrane – “Containing” force acting as a bubble
Shearing – “Cutting” and punching force
Suppression – “Constraining” force on liquids and motion of particles
Optical – “Lensing” force similar to “gravitational lensing”
Intersecting – “Neutralizing” force intersecting other fields

The following graphic representations are recommended for as a visual shorthand when referring to the different fields:

fields.jpg

Here are some suggested applications beyond Tajmar’s comments:

Propulsive –
Terrestrially, most appropriate for levitating vehicles, platforms, emergency egress and sports equipment. Beyond Earth, for propellant-less space vehicles.

Thrust –
Push force useful for supporting unstable structures, levees and producing local microgravity. Could be medically useful for reducing pressure on severe burns or pressure ulcers. Directed thrust field “fingers” could sweep minefields or be used in redirecting and controlling the flow of molten materials without contamination. In the lab, could be used in place of ultracentrifuges.

Traction –
Applying a traction field to increase mechanical load could be an excellent tool for athletic conditioning, physical rehabilitation and artificial gravity environments for space flight.

Standing –
Weak standing fields could be used as a “virtual screen door” to prevent the ingress of flies or mosquitos. Strong fields might be used as windscreens, as dynamically shaped airfoil and hydrofoil bodies for airplanes and submersibles, or to avoid collisions with small objects. Strongest standing fields could push away atmosphere for the creation of high vacuum environments without walls.

Membrane –
Glass-less windows and containment of inert atmospheres for specialty welding are suggested. Small membrane field generators could be thrown into industrial fires to trap combustion products and smother fires.

Shearing –
For cutting, punching, boring, shaping and compression of light materials such as foils and aerogels.

Suppression –
Could be suitable for controlling the rate of chemical reactions and for constraining the shifting of liquids and granular materials during transport.

Optical –
Shaping paths of light for optoelectronics and visual displays. Would make possible new dynamic optics for microscopes or telescopes and perhaps a gravitational equivalent of photonics (gravitonics)?

Intersection –
For windows or doorways into other fields without influencing their operation.

Hauser and Droscher respond to Tajmar

I had missed the fact that earlier this year in a response to an early version of Tajmar’s paper on the role of helium (see June 23 entry), Jochim Hauser and Walter Droscher suggested that there are no major friction effects with helium. Since the effect is not due to the mechanical friction of rotating gases the authors suggest Tajmar’s anomalous effect must be due to other mechanisms.

They go on to say that since symmetry breaking is required for the production of gravitophotons, yet the Tajmar’s effect occurs at temperatures higher than required for Cooper-pair formation, it is likely not the Cooper-pair bosons that produce the symmetry breaking.

This brings into the mix the possibility that a yet unidentified symmetry breaking mechanism far above superconducting temperatures may be sufficient to produce Tajmar’s results (see note from the Editor near the bottom of the April 14 Blog entry).

New Companion Web Site

There is now a companion Web site to this blog. It can be found at:
http://www.gravitymodification.com

The site will include contents of this blog as well as discussions of the chapters from the Gravity Modification Discussion Points noted here on 1/19/08. It will also include input from various threaded discussions seeded into site covering industrial design, architecture, transportation, etc. The purpose of the site is to expand discussion in anticipation of additional research publications late this year or early in ’09.

New Tajmar Paper – The role of Helium

A new publication by Dr. Tajmar (with Plesescu and Seigert) is entitled, “Anomalous Fiber Optic Gyroscope Signals Observed above Spinning Rings at Low Temperature”. It can be accessed HERE.

In the article, Tajmar confirms his earlier results reporting that, “our signals are up to 18 orders of magnitude larger” compared to classical frame-dragging spin-coupling predictions of general relativity.

But there is a new twist. The rotating helium used to cool the system has also been found to contribute to the effect. Helium was employed in Tajmar’s original experimentation series to convey cold to the niobium (Nb) superconducting sample. However, now the Nb has been shown to contribute a weaker effect and the rotating helium produces the main effect. This occurs below 25-30 degrees Kelvin, well above superconducting temperatures for Nb and only 47 degrees below that of liquid nitrogen.

Remember that Tajmar’s central tenet has been that the superconducting Nb allows for the creation of bosonic Cooper pairs and it is the movement of these bosons that produce the gravitomagnetic effect. But helium is also a boson (both nucleus and atom) and apparently the major contributor to the effect. This is still consistent with the work of Droscher and Hauser and brings into view the possibility that the rotating ring need not be of solid material nor restricted to very low temperatures.

Dröscher’s Other… More Controversial Theory of Propulsion

One goal of the work of Dröscher, now made more tangible through his collaboration with Tajmar, is that of propulsive fields achievable of space flight. However a more controversial and advanced propulsion aspect of Dröscher and Häuser’s theory has not been mentioned in their publications in recent years, even though they apparently have not abandoned it. Even among talk of new theories of gravity it is controversial. Yet it was this work that brought them an award by the AIAA (American Institute of Aeronautics and Astronautics), a very down-to-Earth organization of pragmatic aeronautical engineers and physicists in close association with NASA.

The following descriptions are taken almost wholly from Seculine Consulting’s 2006 “Notes on Heim’s Quantum Theory”, Dröscher & Häuser’s 2002 “Physical Principles of Advanced Space Propulsion Based on Heim’s Field Theory” and their 2004 “Guidelines for a Space Propulsion Device Based on Heim’s Quantum Theory”.

In Heim’s work, which predates string theory, Einstein’s general relativity has been extended in a way that expands the space-time metric by 4 dimensions, and also adds 4 non-metric dimensions for a total of 12 dimensions. In Heim Theory standard gravity G is the tensor summation of three gravitational components, i.e. G = Gg + Ggp + Gq. The 3 gravitational forces are as follows:

Gg (Scalar Gravity, or “Gravitonic”) – propagated by the Graviton
Ggp (Dark Energy/Matter) – a pairing of both attractive (+) and repulsive (-) particles propagated by the Gravito-photon
Gq (Vacuum Field) – a repulsive vacuum particle propagated by the Quintessence particle

Under this theory space propulsion may be achieved using gravitophoton field propulsion, which is predicted to be a two stage process:

Stage 1: Sub-luminal travel is predicted via the acceleration provided by an unbalanced pulling force generated through the absorption of negative gravito-photons in the ship’s drive mechanism.

Stage 2: Super-luminal travel possibilities open up through the use of a positive graivito-photon distribution behind the ship to create a pushing force that results in quantum steps in reduced gravitational potential in the speed of light, and is therefore analogous to a warp drive. This is also described by Heim proponents as a “parallel space” travel since there are different values for G and c within the influence of the positive gravito-photonic field.

Super-luminal travel is faster-than-light travel. Hence the controversy.

Under the assumption that the gravitational potential of the spacecraft can be reduced by the production of quintessence particles, a transition into parallel space is postulated to avoid a potential conflict with relativity theory. In order to resolve this contradiction, it is postulated that the object has to leave our space time and enters into a parallel 4-dimensional physical space-time (or parallel universe/multiverse).

Einstein’s goal was the unification of all physical interactions based on his principle of geometrization, i.e., having a metric that is responsible for the interaction. This principle is termed Einstein’s geometrization principle of physics (EGP). To this end, Heim and Dröscher introduced the concept of an internal space, denoted as Heim space H8, having 8 dimensions (in contrast to the theory’s original 12 dimensions). Although H8 is not a physical space, these invisible internal coordinates govern events in space time.

In such a space, superluminal speeds would be possible in principle. The interesting fact is that an object can transit into parallel space at a relatively low speed from our own space time.

It is clear that a gravito-photon field propulsion would be far superior compared to chemical propulsion or any other currently conceived propulsion system. For instance, an acceleration of 1g could be sustained without entering parallel space during a lunar mission. For such a mission only the acceleration phase is needed. For a launch from the surface of the Earth of a 150,000 kg spacecraft producing an acceleration larger than 1g the first half of the distance to the moon is covered in some 2 hours, resulting in a total flight time of 4 hours. How about a more distant target?

A Mars mission, under the same assumptions as a flight to the moon, would achieve a total flight time with acceleration and deceleration of 34 days in normal space. Entering parallel space, a transition is possible at a speed of some 67,000 mph reached after approximately 1 hour at a constant acceleration of 1g. In parallel space the velocity increases to 0.4 c, reducing total flight time to some 2.5 hours. Compare this to NASA’s projections of a two year round trip to Mars by a direct minimum energy orbit in each direction.

Mars is some 0.5 A.U. away (astronomical units, 1 A.U. = 1,500,000,000 km) yet the nearest star is 4.3 lightyears (1 lightyear = 9,460,000,000,000 km) away. For an interstellar mission, the concept of parallel space is indispensable.

An acceleration phase of some 34 days with 1g would result in a final velocity of just one per cent of the speed of light, 0.01 c in normal space. At the end of an acceleration phase of 34 days a spacecraft with a mass of 100,000 kg transitioned into parallel space would cause a velocity gain by a factor of 33,000 resulting in an effective speed of 330 c. A distance of 10 light-years could be covered within 11 days. The deceleration phase requires another 34 days, so a one-way trip to the star Procyon (11.5 lightyears from Earth) would take about 90 days. There are about 30 known stars within a radius of 13 light-years from Earth.